Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(1): 62-73, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38032172

RESUMO

Surface-embedded glycoproteins, such as the spike protein trimers of coronaviruses MERS, SARS-CoV, and SARS-CoV-2, play a key role in viral function and are the target antigen for many vaccines. However, their significant glycan heterogeneity poses an analytical challenge. Here, we utilized individual ion mass spectrometry (I2MS), a multiplexed charge detection measurement with similarities to charge detection mass spectrometry (CDMS), in which a commercially available Orbitrap analyzer is used to directly produce mass profiles of these heterogeneous coronavirus spike protein trimers under native-like conditions. Analysis by I2MS shows that glycosylation contributes to the molecular mass of each protein trimer more significantly than expected by bottom-up techniques, highlighting the importance of obtaining complementary intact mass information when characterizing glycosylation of such heterogeneous proteins. Enzymatic dissection to remove sialic acid or N-linked glycans demonstrates that I2MS can be used to better understand the glycan profile from a native viewpoint. Deglycosylation of N-glycans followed by I2MS analysis indicates that the SARS-CoV-2 spike protein trimer contains glycans that are more difficult to remove than its MERS and SARS-CoV counterparts, and these differences are correlated with solvent accessibility. I2MS technology enables characterization of protein mass and intact glycan profile and is orthogonal to traditional mass analysis methods such as size exclusion chromatography-multiangle light scattering (SEC-MALS) and field flow fractionation-multiangle light scattering (FFF-MALS). An added advantage of I2MS is low sample use, requiring 100-fold less than other methodologies. This work highlights how I2MS technology can enable efficient development of vaccines and therapeutics for pharmaceutical development.


Assuntos
Glicoproteína da Espícula de Coronavírus , Vacinas , Humanos , Glicoproteína da Espícula de Coronavírus/química , Espectrometria de Massas/métodos , Polissacarídeos/análise
2.
Pharm Res ; 40(12): 3087-3098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936013

RESUMO

PURPOSE: Monoclonal antibodies (mAbs), like other protein therapeutics, are prone to various forms of degradation, some of which are difficult to distinguish from the native form yet may alter potency. A generalizable LC-MS approach was developed to enable quantitative analysis of isoAsp. In-depth understanding of product quality attributes (PQAs) enables optimization of the manufacturing process, better formulation selection, and decreases risk associated with product handling in the clinic or during shipment. METHODS: Reversed-phase chromatographic peak splitting was observed when a mAb was exposed to elevated temperatures. Multiple LC-MS based methods were applied to identify the reason for peak splitting. The approach involved the use of complementary HPLC columns, multiple enzymatic digestions and different MS/MS ion dissociation methods. In addition, mAb potency was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: The split peaks had identical masses, and the root cause of the peak splitting was identified as isomerization of an aspartic acid located in the complementarity-determining region (CDR) of the light chain. And the early eluting and late eluting peaks were collected and performed enzymatic digestion to confirm the isoAsp enrichment in the early eluting peak. In addition, decreased potency was observed in the same heat-stressed sample, and the increased isoAsp levels in the CDR correlate well with a decrease of potency. CONCLUSION: Liquid chromatography-mass spectrometry (LC-MS) has been utilized extensively to assess PQAs of biological therapeutics. In this study, a generalizable LC-MS-based approach was developed to enable identification and quantitation of the isoAsp-containing peptides.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Anticorpos Monoclonais/química , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Regiões Determinantes de Complementaridade/química
3.
MAbs ; 15(1): 2199466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032437

RESUMO

Transition metals can be introduced in therapeutic protein drugs at various steps of the manufacturing process (e.g. manufacturing raw materials, formulation, storage), and can cause a variety of modifications on the protein. These modifications can potentially influence the efficacy, safety, and stability of the therapeutic protein, especially if critical quality attributes (CQAs) are affected. Therefore, it is meaningful to understand the interactions between proteins and metals that can occur during the manufacturing process, formulation, and storage of biotherapeutics. Here, we describe a novel strategy to differentiate between ultra-trace levels of transition metals (cobalt, chromium, copper, iron, and nickel) interacting with therapeutic proteins and free metal in solution in the drug formulation using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Two monoclonal antibodies (mAbs) were coformulated and stored up to nine days in a scaled down model to mimic metal exposure from manufacturing tanks. The samples containing the mAbs were first analyzed by ICP-MS for bulk metal analysis, then studied using SEC-ICP-MS to measure the extent of metal-protein interactions. The SEC separation was used to differentiate metal associated with the mAbs from free metal in solution. Relative quantitation of metal-protein interaction was then calculated using the relative peak areas of protein-associated metal to free metal in solution and weighting it to the total metal concentration in the mixture as measured by bulk metal analysis by ICP-MS. The SEC-ICP-MS method offers an informative means of measuring metal-protein interactions during drug development.


Assuntos
Anticorpos Monoclonais , Metais , Espectrometria de Massas/métodos , Metais/análise , Cobre/análise , Cobre/metabolismo , Ferro
4.
Pharm Res ; 40(6): 1411-1423, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36627449

RESUMO

PURPOSE: Succinimide formation and isomerization alter the chemical and physical properties of aspartic acid residues in a protein. Modification of aspartic acid residues within complementarity-determining regions (CDRs) of therapeutic monoclonal antibodies (mAbs) can be particularly detrimental to the efficacy of the molecule. The goal of this study was to characterize the site of succinimide accumulation in the CDR of a therapeutic mAb and understand its effects on potency. Furthermore, we aimed to mitigate succinimide accumulation through changes in formulation. METHODS: Accumulation of succinimide was identified through intact and reduced LC-MS mass measurements. A low pH peptide mapping method was used for relative quantitation and localization of succinimide formation in the CDR. Statistical modeling was used to correlate levels of succinimide with basic variants and potency measurements. RESULTS: Succinimide accumulation in Formulation A was accelerated when stored at elevated temperatures. A strong correlation between succinimide accumulation in the CDR, an increase in basic charge variants, and a decrease in potency was observed. Statistical modeling suggest that a combination of ion exchange chromatography and potency measurements can be used to predict succinimide levels in a given sample. Reformulation of the mAb to Formulation B mitigates succinimide accumulation even after extended storage at elevated temperatures. CONCLUSION: Succinimide formation in the CDR of a therapeutic mAb can have a strong negative impact on potency of the molecule. We demonstrate that thorough characterization of the molecule by LC-MS, ion exchange chromatography, and potency measurements can facilitate changes in formulation that mitigate succinimide formation and the corresponding detrimental changes in potency.


Assuntos
Ácido Aspártico , Regiões Determinantes de Complementaridade , Regiões Determinantes de Complementaridade/química , Anticorpos Monoclonais/química , Espectrometria de Massas , Succinimidas/química
5.
Anal Chem ; 94(23): 8416-8425, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35622908

RESUMO

CD24Fc is a homodimeric recombinant Fc-fusion protein comprised of human CD24 connected to immunoglobulin G1 (IgG1) Fc fragment. CD24 is heavily glycosylated, and its biological function is considered mainly mediated by its glycosylation. Identification of the O-glycosylation sites would facilitate an in-depth understanding of the functional role of O-glycans in CD24. However, the presence of clustered mucin-type O-glycans together with N-glycans makes the determination of O-glycosylation sites and abundance very challenging. In this study, two sets of liquid chromatography-mass spectrometry (LC-MS) workflows were developed for the comprehensive characterization of O-glycosylation in CD24: (1) Fractionation and collision-induced dissociation (CID) workflow involving multienzyme digestion, fractionation, OpeRATOR/SialEXO digestion, and CID analysis; (2) Direct OpeRATOR/SialEXO digestion followed by electron-transfer/higher-energy collision dissociation (EThcD) analysis. The precise O-glycosylation sites were identified in CD24 for the first time, and the site occupancy was assessed. A total of 12 O-glycosylation sites were identified. Seven glycosylation sites were identified by both workflows, and five additional sites were identified only by the EThcD workflow. The predominant O-glycosylation site in CD24 was Thr25 followed by Thr15. The CID workflow provided an overall relative quantitation of O-glycoforms at the CD24 level and site localization for singly O-glycosylated peptides. The EThcD workflow directly identified glycosylation sites by tandem mass spectrometry (MS/MS) for singly, doubly, and triply O-glycosylated peptides. Together, both workflows validated each other's results and can be applied to a complex mucin-type O-glycosylation site analysis of other glycoproteins and Fc-fusion therapeutics.


Assuntos
Fragmentos Fc das Imunoglobulinas , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Glicopeptídeos/química , Glicosilação , Humanos , Polissacarídeos , Proteínas Recombinantes de Fusão/química , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...